Trypanosome telomeres are protected by a homologue of mammalian TRF2.
نویسندگان
چکیده
Putative TTAGGG repeat-binding factor (TRF) homologues in the genomes of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major were identified. They have significant sequence similarity to higher eukaryotic TRFs in their C-terminal DNA-binding myb domains but only weak similarity in their N-terminal domains. T. brucei TRF (tbTRF) is essential and was shown to bind to duplex TTAGGG repeats. The RNA interference-mediated knockdown of tbTRF arrested bloodstream cells at G(2)/M and procyclic cells partly at S phase. Functionally, tbTRF resembles mammalian TRF2 more than TRF1, as knockdown diminished telomere single-stranded G-overhang signals. This suggests that tbTRF, like vertebrate TRF2, is essential for telomere end protection, and this also supports the hypothesis that TRF rather than Rap1 is the more ancient DNA-binding component of the telomere protein complex. Identification of the first T. brucei telomere DNA-binding protein and characterization of its function provide a new route to explore the roles of telomeres in pathogenesis of this organism. This work also establishes T. brucei as an attractive model for telomere biology.
منابع مشابه
A shared docking motif in TRF1 and TRF2 used for differential recruitment of telomeric proteins.
Mammalian telomeres are protected by a six-protein complex: shelterin. Shelterin contains two closely related proteins (TRF1 and TRF2), which recruit various proteins to telomeres. We dissect the interactions of TRF1 and TRF2 with their shared binding partner (TIN2) and other shelterin accessory factors. TRF1 recognizes TIN2 using a conserved molecular surface in its TRF homology (TRFH) domain....
متن کاملTPP1 Blocks an ATR-Mediated Resection Mechanism at Telomeres.
The regulation of 5' end resection at DSBs and telomeres prevents genome instability. DSB resection is positively and negatively regulated by ATM signaling through CtIP/MRN and 53BP1-bound Rif1, respectively. Similarly, telomeres lacking TRF2 undergo ATM-controlled CtIP-dependent hyper-resection when the repression by 53BP1/Rif1 is alleviated. However, telomere resection in the absence of 53BP1...
متن کاملTRF2 Protein Interacts with Core Histones to Stabilize Chromosome Ends*
Mammalian chromosome ends are protected by a specialized nucleoprotein complex called telomeres. Both shelterin, a telomere-specific multi-protein complex, and higher order telomeric chromatin structures combine to stabilize the chromosome ends. Here, we showed that TRF2, a component of shelterin, binds to core histones to protect chromosome ends from inappropriate DNA damage response and loss ...
متن کاملTRF2/RAP1 and DNA-PK mediate a double protection against joining at telomeric ends.
DNA-dependent protein kinase (DNA-PK) is a double-strand breaks repair complex, the subunits of which (KU and DNA-PKcs) are paradoxically present at mammalian telomeres. Telomere fusion has been reported in cells lacking these proteins, raising two questions: how is DNA-PK prevented from initiating classical ligase IV (LIG4)-dependent non-homologous end-joining (C-NHEJ) at telomeres and how is ...
متن کاملSenescence induced by altered telomere state, not telomere loss.
Primary human cells in culture invariably stop dividing and enter a state of growth arrest called replicative senescence. This transition is induced by programmed telomere shortening, but the underlying mechanisms are unclear. Here, we report that overexpression of TRF2, a telomeric DNA binding protein, increased the rate of telomere shortening in primary cells without accelerating senescence. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 25 12 شماره
صفحات -
تاریخ انتشار 2005